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It is shown that the peculiar properties of quantum statistics can be explained as 
a consequence of the destroyed isotropy of the subquantum space. 

1. INTRODUCTION 

A certain progress has been achieved in the understanding of quantum 
phenomena such as EPR correlations. It appears that the experimentally 
studied Bell-like inequalities do not prove the nonlocality of quantum mechan- 
ics (or that of hidden variables), but rather the fact that the subquantum 
world cannot be treated as a metric space with constant curvature (Vindugka, 
1993b, 1994b). 

Our attitude to the problem coincides partially with that of Pitowsky 
(1982), Gudder (1993), and others (Vuji~id et  al., 1994). The main aim of 
this paper is to give deeper reasons for the use of the ideas of relativity in 
the interpretation and further development of quantum theory. 

2. BELL'S INEQUALITIES AS A CONSEQUENCE OF THE 
ISOTROPY OF THE HIDDEN VARIABLE SPACE 

In the usual Bell scheme of hidden variables the correlation function 
has the form (Bell, 1964) 

P(a, b) = l A(a, k)B(b, k)p(k) dk (1) 

where a and b represent space elements which characterize measured variables 
(see also Vindugka, 1994a, 1993a). A(a, k) and B(b, X) denote the experimental 
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outcomes for the first and the second particle, respectively (acquiring values 
of + 1 and - 1  according to convention), the ~,'s are hidden parameters, and 
p(h) is a positively defined, normalized measure of the probability. 

In terms of the affine geometry the space elements a and b can be taken 
as unit vectors with their ends on a spherical surface and ~ as radical rays 
with ends on some general surface S. In this case the probability density can 
be expressed as 

O(X) dR -- (nh) dS (2) 

Here n is a normal to the surface S such that (nh) - 0. The normalization 
condition then takes the form 

J ; (nX) dS = 1 (3) 
s 

The statistical scheme used is supposed to obey the following properties: 
i. The isotropy of the macroscopic space in relation to the space elements 

defined by the measuring devices 

P(a, b) = P(Ia - b I) (4) 

2. The isotropy of the hidden variable space 

A(a, h), B(b, ~) 4= f (nt ,  n2 . . . .  ) and 9(?v) :~ f (nj ,  n2 . . . .  ) (5) 

in relation to all vectors n~, n2 . . . .  belonging to the space spanned by the 
vectors a and b. 

It can be proved that the strongest correlations permitted by the consid- 
ered Bell scheme of hidden variables are those for which the correlation 
function P(a, b) is a linear (sawlike) function of l a - b[ (Tyapkin and 
Vindugka, 1991). 

The most straightforward proof of this statement can be given using 
the function 

1 
D(a, b) - {P(a, a) - P(a, b)} (6) 

2P(a, a) 

which plays the role of the metric distance in Bell's scheme of hidden 
variables, as follows from the following theorem. 

Theorem. Let D(0) = 0, D(K) = 1, and A(a, h), B(b, ~.), and O(X) 
guarantee the rotational invariance of D(a, b), i.e., D(a, b) = D(%,b). Then 
D(a, b) is the exact metric distance of the spherical or Riemannian geometry 
if and only if the sequence 
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A ( a l ,  k ) ,  A(a2,  k )  . . . . .  A(a,, ,  k )  

for an ordered set of the space elements 

al ,  a2, a3, . . . , an, ~bcqa, ' <~ K 

changes sign no more than once for each X. 

For a one-dimensional space of elements the ordering simply means 
placing ai in correspondence with their increasing index; for a general spheri- 
cal surface it means that ai are placed similarly on the main circle. The K 
denotes the distance for which P(K) = - P ( 0 )  holds. The proof of the theorem 
can be found, e.g., in Tyapkin and Vindugka (1991). 

E x a m p l e  1. The linear polarization of photon pairs can be described 
with hidden variables lying in the plane perpendicular to the photon momen- 
tum, using 

A(a, X) = A(a, hi) = s i g n ( h i M 9  (7) 

B(a, k) = B(b, X2) = sign(k2k~) (8) 

The vector k~ is constructed in such a way that a is a bisectrix of the 
angle /-Xi, a. Hidden vectors are linked as X~ 1"1" X2 or Xl 2_ h~_ for states 
with even and odd parity, respectively. 

The sufficient condition for fulfilling the conditions of the theorem is 
the rotational invariance of A(a, X) and B(b, h ) - - w h i c h  is guaranteed by (7) 
and (8 ) - - and  of p(X), which will hold if S in (2) and (3) is taken as a circle. 

3. THE R E L A T I V E  M E A S U R E  OF P R O B A B I L I T Y  

The fact that the quantum correlation function is not a linear function 
of la - b l can be interpreted as experimental evidence that the hidden 
variable space is not isotropic. 

E x a m p l e  2. Let us suppose that the hidden variable space of linear photon 
polarization can be described with the use of  Minkowski plane geometry, 
i.e., that our hidden variable scheme is invariant under hyperbolic rotations 
(Vindugka, 1991b). It is not difficult to rewrite (7) and (8) in terms of 
hyperbolic invariants 

A(a, X) = A(a, X~) : sign(llM'[[~,) (9) 

B(b, h) = B(b, he) = sign(llX~ll 2) (10) 

here II r 2 Xillh denotes the square of the hyperbolic norm of ith particle when 
axis x is identified with r (r = a or b). 
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A curve which defines the distribution of p()t) must be evidently con- 
structed of/ 'our branches of hyperbolas and then 

p(X) dh -4 IIX.ll~(4llXl[~) -~ (11) 

where the subscript e denotes Euclidean norm. 
Using (1) and (9)-(11), we get correct quantum mechanical results for 

the correlations. 
The use of Minkowski geometry means a great step away from classical 

statistics because the coordinate system must be oriented in a definite way 
in relation to a or b in this case. We will reflect this fact with the additional 
index r 

b) = f A(a, X)B(b, h)pr(h) dX Pr(a, (12) 

To fulfill the conditions of the macroscopic isotropy (4) we are forced to 
interpret as quantum mechanical correlations only such Pr(a, b) for which 
r = a o r r = b .  

It appears, therefore, that the statistics with the relative measure (RM) 
is more restrictive than the classical one because we must abandon an absolute, 
independent measure p. This also the reason why the so-called no-go theorems 
for hidden variables are invalidated and why various proofs of nonlocality 
in quantum phenomena (Stapp, 1992; Hardy, 1992) can be considered as 
doubtful. 

Starting from Tyapkin and Vindugka (1991), we have interpreted the 
RM as a necessity of only the relative description of the spacelike correlations. 
In such an interpretation the space elements defined by the measuring devices 
play a role of reference frames to which the description of the physical system 
must be related. Because of the equivalence of both particles and different 
space elements a, b . . . .  there must exist a transformation which connects 
the different reference frames used 

pb(X~) = k(~ab)p.(h~') (13) 

The properties of the transformation of /?(r can be deduced from the 
following reasonable assumptions (Vindugka, 1991 a): 

A 1. The principle of covariant description. In practice this means that 
all procedures of A(a, hi), B(b, X/), and also p(h i) must have the 
same functional dependence on the corresponding variables h;. 

A2. One-to-one correspondence between X~' r X~. 
A3. Each concrete event must be taken as an invariant of the transfor- 

mation, i.e., the result of each concrete measurement must not 
depend on the reference frame used for its description. 
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Then the transformations of R(%b) can be found. It can be shown that 
they do not form a continuous group in relation to the parameter %,b, but a 
cyclic group only (the number of its elements is equal to the number of the 
mutually commuting operators). From this also certain peculiar properties of 
the quantum probabilities can be deduced (Pitowsky, 1991). 

4. T H E  P R O B L E M  OF L O C A L I T Y  

During the golden age of the Bell inequalities in the last decades the 
possibility of exploiting the RM was rather disgarded because it seemed that 
it would bring nothing new in relation to the "nonlocal influences." This 
belief was based on the following seemingly convincing arguments: 

(i) Any theory with RM must be nonlocal because the link between 
~1 and h2 leads to the change of the distribution P(h2) when the 
~1 are measured. 

(ii) Or the source must be able to guess the future orientations of the 
measuring devices for creating the correct p, and Pb- 

(iii) Or there is no "free will" and the orientations of a and b are 
determined by the source itself. 

The actual situation can be clarified by introducing a simple classical 
but relativistic correlation (Vindugka, 1994b). 

Example 3. The source S creates two particles 1 and 2 which bear hidden 
vectors k~ and X2 such that ~ ]'$ ~2 (see Fig. 1). For the whole ensemble 
of such particles the pairs of opposite vectors are equally distributed on the 
circle lying in the plane. 

For the sake of simplicity the particles are supposed to be at rest in 
relation to the frame of reference related to the source when the measurements 

a I 
A Va 

B 

L 2 

Fig. 1. The relativistic plane model for correlations. 
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are realized. The first experimenter using the device A is moving with velocity 
va in direction to the source and his apparatus is oriented perpendicularly to 
a. He measures the value 

A(a, k) = A(a, kl) = sign(akl) 

where X] is the hidden vector of the first particle. 
Similarly, the second experimenter with device B moving with velocity 

vh in another direction measures the value of the second particle onto 
b (b 2_ vh) 

B(b, k) = B(b, k2) = sign(bk2) 

The measurements of both experimenters are realized in spacelike inter- 
vals and do not disturb each other. Let us remark that this plane model is 
reminiscent of a spin singlet system because P(a, a) = - 1 and P(a, - a )  = + 1. 

What distributions of kz and k2 will be found by A and B when the 
measuring procedure is repeated many times? Taking into account the Lorentz 
transformations, it is not difficult to realize that the first experimenter will find 

 2co+ 2)} 
i.e., the distribution of k~ has a peak around the direction of a. Due to the 
property of the Lorentz transformation (the straight line on which kl and k~ 
lie remains a straight line in any frame of reference), the distribution of k~ 
as is seen by the first experimenter is also peaked around the direction of a 
although there is no interaction between device A and the particle 2. Because 
the apparatuses are equivalent it is clear that the same reasoning relates to 
the second experimenter with device B. Here both distributions of kl and )t2 
are peaked around b. 

Inspecting objections (i)-(iii) formulated above, we conclude that they 
fail in this purely classical example. 

What we can say about the correlation function and Bell's inequalities 
in this case? Because each concrete event is invariant here, it is clear that 
D(a, b) is a metric distance of the spherical geometry on the circle and, 
therefore, the Bell inequalities are satisfied only if the angle (or the "distance") 
between a and b is measured in the reference frame where the source is at 
rest. This is not so in the case when this angle is measured with regard to 
the relation of one apparatus to the other because in such a case the hidden 
anisotropy of the whole picture appears. 

Let us note that we have by this example an explanation of quantum 
phenomena not with the use of some hidden relativistic velocities, but rather 
by stressing the deep affinity between both great theories of 20th century 
physics. 
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5. C O N C L U D I N G  R E M A R K S  

With regard to the role of quantum theory in human knowledge, physi- 
cists are divided into two groups. 

The majority considers quantum mechanics as a more general theory 
than classical physics and insists that all physical phenomena can be (and 
must be) described in the language of QM. In this approach difficulties arise 
with different macroscopic phenomena such as Schrrdinger 's  cat, the moon 
when nobody is looking at it, etc. 

The minority believes, on contrary, that all quantum phenomena can be 
explained by classical statistics. This approach meets difficulties with "no- 
go" theorems for hidden variables. 

What can we say about this problem from the point of view of the 
relative measure of the probability? At first sight it could seem that relative 
measure supports the first opinion because the probability measure p, is more 
general than the absolute, independent p. 

Nevertheless, the more thorough inspection of Examples 1 and 2 shows 
that this is not so. Here the difference between quantum statistics and classical 
statistics is as deep as the difference between Euclidean and Minkowski plane 
geometries. A similar conclusion can be drawn from the consideration of 
other correlations where the destroyed isotropy has another character. 

It seems, therefore, that quantum statistics and classical statistics can 
be applied only in their own specific domains. 
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